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Abstract

The mobility of15N labeled proteins can be characterized by measuring the cross-correlation ratesδN,NI that gov-
ern the conversion of Zeeman orderNz of an amide15N nucleus into longitudinal two-spin order 2NzIz involving
the amide15N and1H nuclei. This represents an alternative to the measurement of15N self-relaxation rates 1/T1 and
1/T2 or 1/T1ρ. The rate of interconversion betweenNz and 2NzIz is due to cross-correlation between fluctuations of
different interactions and is not affected by a variety of relaxation mechanisms that contribute to the self-relaxation
rates 1/T1, 1/T2 and 1/T1ρ. Spin diffusion among protons, which affects the measurements, can be quenched by
various means that are evaluated by experiments and simulations. By applying an off-resonance radio-frequency
(RF) field in the vicinity of the nitrogen resonance, the spectral density functionJ(ω) can be determined at the
frequency origin and at the nitrogen Larmor frequency. The methods are applied to the paramagnetic High-Potential
Iron-Sulfur Protein iso I (HiPIP I) fromE. halophilain its reduced state.

Introduction

The longitudinal and transverse self-relaxationρN =
1/T1, 1/T2 and 1/T1ρ of 15N nuclei and the cross-
correlation (Overhauser) ratesσNI involving neigh-
bouring protonsIl can yield valuable insight into
internal dynamics of macromolecules (Wagner, 1993;
Palmer et al., 1996). The interpretation of these rates
is straightforward if a number of assumptions are ful-
filled (Kay et al., 1989): (i) if the relaxation within
the N-I spin pairs is caused predominantly byN-
I dipole-dipole andN-spin CSA interactions; (ii) if
theN-I spin pairs are reasonably isolated from their
environment, so that interactions between neighbour-
ing and remote protonsIl and Ik need not be taken
into account; (iii) if the local and overall dynamics
can be described in terms of two correlation times
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(Lipari and Szabo, 1982). Under these assumptions,
one can determine a local order parameterS2

i and a
local correlation timeτci . It is also possible to map
the spectral densities without any assumptions regard-
ing the motional model (Peng and Wagner, 1992).
However, the accuracy of the measurement of self-
relaxation rates is usually not sufficient to allow a
precise evaluation of the spectral densities (Peng and
Wagner, 1995), unless it is assumed that the spec-
tral density is uniform over a limited range, so that
J (ωI +ωN) = J (ωI ) = J (ωI −ωN), whereωI and
ωN are the Larmor frequencies. With this assumption,
it is sufficient to measure three independent relaxation
rates at a given static magnetic field strength, since
the spectral density function can be characterized by
only three valuesJ (0), J (ωN), andJ (ωI ) (Kay et al.,
1992; Palmer et al., 1992; Farrow et al., 1994; Dayie
and Wagner, 1996; Lefèvre et al., 1996).

In diamagnetic proteins, the contributions from
theN-I dipole-dipole interaction and the CSA of the
N spin are likely to be predominant, so that other
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mechanisms may be neglected. However, even in N-H
subsystems in amides, the magnitude of the chemical
shift anisotropy may vary from one residue to another,
and it may not be satisfactory to assume an average
CSA of 160 ppm (Tjandra et al., 1996a). Furthermore,
chemical exchange in N-H groups may contribute to
the apparent transverse relaxation rates (Palmer et al.,
1996). In paramagnetic proteins, unpaired electrons
lead not only to dipolar and contact interactions, but
also to dipolar interactions between the Curie spin (av-
erage magnetic moment associated with the electrons)
and the nuclear spins, which lead to an enhancement
of the self-relaxation rates of theN spin (Solomon,
1955; Guéron, 1975; Vasavada and Nageshwara Rao,
1989; Banci et al., 1991; Bertini et al., 1996c).

Cross-correlations between fluctuations of differ-
ent interactions can provide structural and dynamic
information, provided satisfactory protocols can be
developed for their accurate measurement (Tjandra et
al., 1996a; Reif et al., 1997; Pervushin et al., 1997).
We shall focus attention on the cross-correlation rate
δN,NI , i.e. the rate of conversion of Zeeman order
Nz into longitudinal two spin order 2NzIz. In dia-
magnetic systems, such a conversion can only occur
when there is a correlation between the fluctuations of
the 15N CSA and theN-I dipole-dipole interactions.
In paramagnetic systems, there are three relaxation
mechanisms due to unpaired electrons that can con-
tribute to the self-relaxation rates of the nuclei, but
only the Curie mechanism (dipolar interaction with the
average electronic magnetic moment) can contribute
to the cross-correlation rateδN,NI . Chemical or con-
formational exchange processes are not expected to
contribute significantly to this rate. In the absence of
an RF field, the rateδN,NI depends only on the spec-
tral densityJ(ωN ). When the15N magnetization is
locked along an effective field tilted by an angleθN
with respect to the static magnetic field, the cross-
correlation rateδN,NI also depends onJ(0). Com-
parison of the ratesδN,NI measured with (at least)
two different anglesθN allows one to separate the
contributions ofJ(0) andJ(ωN ).

We shall give expressions for cross-correlation
ratesδN,NI when theI and/orN magnetization com-
ponents are locked along tilted effective fields. Effects
of spin-diffusion due to cross-relaxation ratesσl,k be-
tween neighbouring and remote protonsIl andIk will
be discussed, and different schemes for quenching
spin diffusion will be compared by simulation and
experiment. The methods have been applied to the
High-Potential Iron-Sulfur Protein iso I (HiPIP I) ob-

tained from the photosynthetic bacteriumE. halophila.
This is a protein with 73 amino acids containing an
Fe4S4 cluster. Formally, two of the iron atoms in the
reduced state should have an oxidation state+2 and
the other two an oxidation state+3. It appears how-
ever that all four iron atoms are equivalent with a
non-magnetic ground state (S= 0) (Dickson et al.,
1974). Since the excited states are partly populated
at room temperature, they have significant effects on
nuclear relaxation (Banci et al., 1994; Bertini et al.,
1996a, b).

Theory

We shall consider a sub-system comprising a spinN,
its nearest neighbour protonIl , and, for computational
convenience, no more than twelve remote protonsIk(k
= 1 . . . 12 ). We consider the termsNz, Ilz, Ikz,
2NzIlz and 2NzIkz. These components may be locked
along (possibly tilted) effective fields. A system of
coupled differential equations is defined in analogy
to the Solomon equations, with a matrixR that con-
tains all self- and cross-relaxation rates. If there are 12
remote protons, we have a system of 27 coupled equa-
tions. An RF field with a carrier frequencyωrfN and an
amplitudeω1N is applied in the vicinity of the Larmor
frequencyωN . This gives rise to a tilted effective field

with an amplitudeωeffN =
√
(ω1N)2+ (ωN − ω

rf
N )

2

and a tilt angleθN with respect to the static magnetic
field:

θN = arctan

(
ω1N

ωN − ω
rf

N

)
(1)

Another RF field with a carrier frequencyωrfI is ap-
plied in the vicinity of the proton Larmor frequencyωI
of the nearest neighbour protonIl , leading to an effec-
tive field with an amplitudeωeffI and a tilt angleθI .
Analogous expressions can be written for the remote
spinsIk. For simplicity, we shall assume that the trans-
verse componentω1I is much larger than the range of
offsets of all spinsIl andIk, so that all tilt anglesθl
andθk may be assumed to be equal fork = 1 . . .12.
These angles will be denoted by the common symbol
θI . The time-dependence of the density operatorσ can
be calculated as a function of the mixing timeτm by
diagonalisation:

σ(τm) = exp(−Rτm) · σ(0)
= V · exp(−3τm) · V−1 · σ(0) (2)

where the eigenvalues of3 and the elements ofV de-
pend on the tilt anglesθN andθI . For proton systems,



511

the relaxation rates in the presence of tilted effective
fields have been given elsewhere (Desvaux, 1997).
The Hamiltonian in the laboratory frame is:

H(t) = ωNNz + ωI Ilz +6kωI Ikz
+2ω1N cos(ωrfN t)Nx
+2ω1I cos(ωrfI t)[Ilx +6kIkx]+H1(t) (3)

whereH1(t) contains time-dependent dipolar and CSA
interactions which are responsible for relaxation. The
cross-relaxation rate (NOE) between neighbour and
remote proton componentsIlz andIkz locked along the
same tilted effective field is determined by the spectral
densityJlk(ω)

σIkIk =
(

sin2 θI − 1

3

)
JIk(0)+ sin2 θI JIk(ωI )

+2 cos2 θI JIk(2ωI ) (4)

where we have used the normalization of Desvaux,
1997, for the spectral density functions. A similar ex-
pression applies for a pair of remote protonsIk and
Ik′ . The superscripts on the rateσ indicate the density
operator components (‘reservoirs’) that are coupled to-
gether, while the subscripts refer to the interactions
that are responsible for their coupling. This notation
may appear redundant in simple cases such as Equa-
tion 4, but will be useful below. When two components
Nz andIz are locked along their respective tilted fields,
their cross-relaxation rate (heteronuclear NOE) is:

σNINI = cosθI cosθN

[
−1

3
JNI (ωI − ωN)

+2JNI (ωI + ωN)] (5)

The rate of interconversion betweenNz and 2NzIz
arising from cross-correlation between the CSA of
spinN and the dipole-dipole interactionN-I is:

δ
N,NI
N,NI = − cosθI

[
8

3
sin2 θNJN,NI (0)

+2(1+ cos2 θN)JN,NI (ωN)
]

(6)

whereJN,NI is the relevant spectral density function.
Note that in the absence of an RF field applied in the
vicinity of the 15N resonance (i.e., whenθN = 0), this
expression reduces toδN,NIN,NI = −4 cosθI JN,NI (ωN ),
which is small in macromolecules. In the slow mo-
tion limit, the cross-correlation rateδN,NIN,NI greatly
increases if one applies an RF field in the vicinity of
the15N resonance so thatθN 6= 0. If the internuclear
distance and the angle subtended between the princi-
pal axis of the CSA tensor and the NH bond vector are
constant, the two spectral density functionsJNI and

JN,NI are proportional to each other. The contribution
to the self-relaxation rate of 2NzIz that arises from the
dipolar interaction betweenN andI is:

ρNINI =
2

3

[
sin2 θI cos2 θN + sin2 θN sin2 θI

]
JNI (0)

+1

2

[
(1+ cos2 θN) cos2 θI + sin2 θN

sin2 θI

]
JNI (ωN)

+ 1

12

[
(1+ cos2 θN) sin2 θI+
sin2 θN(1+ cos2 θI )

]
JNI (ωI − ωN)

+1

2

[
(1+ cos2 θI ) cos2 θN+

sin2 θN sin2 θI

]
JNI (ωI )

+1

2

[
(1+ cos2 θN) sin2 θI + sin2 θN(1+

cos2 θI )
]
JNI (ωI + ωN) (7)

Except for contributions from fast exchange processes
(Akke and Palmer, 1996; Zinn-Justin et al., 1997), all
other self-relaxation rates result from a weighted aver-
age of longitudinal and transverse rates corresponding
to θi = 0◦ and 90◦:

ρ(θi ) = ρ(θ = 0◦) cos2 θi + ρ(θ = 90◦) sin2 θi (8)

wherei may stand for one of the spinsN, Il or Ik. The
presence of a paramagnetic center leads to an enhance-
ment of all self-relaxation rates. These contributions
can be evaluated by combining Equation 8 with ex-
pressions for relaxation rates 1/T1 and 1/T2 arising
from dipolar and contact terms between nuclei and
electrons (Solomon, 1955; Guéron, 1975; Vasanada
and Nageswara Rao, 1989; Banci et al., 1991; Bertini
et al., 1996c). Dipolar interactions involving a para-
magnetic center may also induce cross-correlation
effects (Bertini et al., 1993; Werbelow and Thévand,
1993; Mäler et al., 1996). Cross-correlation between
the dipole-dipole interactionsN-S and N-I may con-
tribute to the rate of interconversion betweenNz and
2NzIz:

δ
N,NI
NS,NI = cosθI

[
8

3
sin2 θNJNS,NI (0)

+2(1+ cos2 θN)JNS,NI (ωN)
]

(9)

Again, the superscript indicates the reservoirs that are
interconnected, while subscripts indicate the interac-
tions that are responsible for the flow of order from one
reservoir to another. A comma is used when more than
two spins are involved. Note thatJNS,NI (ω) is usually
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not proportional toJNI (ω), since it represents the
Fourier transformation of the cross-correlation func-
tion of the N-S and N-I vectors, which is not only
affected by the motion of theN-I vector, but also by
fluctuations of theN-S distance, by the relative mo-
tion of these two vectors, and by theSspin dynamics.
Cross-correlation between the dipolarN-I and theN-
S interactions involves theaverageCurie magnetic
moment<S> of the electron. Rapidly fluctuating
contributions average out, while the contact interac-
tion cannot contribute because it is characterized by a
tensor of a different rank.

Cross-correlation between the fluctuations of
chemical shifts and J coupling constants can contribute
to the rateδN,NI (Brüschweiler and Ernst, 1991). In
practice, these contributions are believed to be very
small in proteins.

To summarize, the flow between the Zeeman reser-
voirNz and the two-spin order 2NzIz is determined by
two contributions:

δN,NI = δ
N,NI
N,NI + δ

N,NI
NS,NI (10)

the first (diamagnetic) term is due to cross-correlation
beween the fluctuations of the CSA of theN spin
and theN-I dipole-dipole interaction, while the sec-
ond (paramagnetic) term is due to cross-correlation
between theN-S and N-I dipole-dipole interactions.
In the experimental cases discussed below, the para-
magnetic contributionδN,NINS,NI is much smaller than

the diamagnetic contributionδN,NIN,NI for all 15N nuclei
that are not too close to the Fe4S4 center which is
only weakly paramagnetic. We shall therefore disre-
gard the paramagnetic term in Equation 10. However,
paramagnetic contributions to the self-relaxation rates
of Equation 8 will be taken into consideration.

Ratios of build-up initial rates

If we recall thatJNI andJN,NI are usually considered
to be proportional to each other, the measurement of
the cross-correlation rateδN,NIN,NI of Equation 6 with
two different tilt anglesθN andθ′N , and of the cross-
relaxation rate (NOE)σNINI of Equation 5 withθN = 0
can provide three independent measurements that suf-
fice to determine the spectral density functionJNI
at the three frequencies 0,ωN , andωI . The cross-
correlation rate can be obtained from the initial slope
κN,NI of the build-up curve of the conversion ofNz
into 2NzIz:

κN,NI = lim
τm→0

[
d

dτm
aN,NI (τm)

]

= −δN,NINz(0) (11)

whereτm is the mixing time,aN,NI (τm) the amplitude
of the corresponding cross peak in a two-dimensional
spectrum (see below), andNz(0) the expectation value
of the 15N Zeeman term at the beginning of the
mixing time. The measurement of the initial magne-
tizationNz(0) requires a complementary experiment,
in analogy to cross-relaxation measurements in Cα-
CO systems (Cordier et al., 1996; Zeng et al., 1996).
Fortunately, this can be avoided by comparing initial
slopes obtained with different tilt anglesθN . Indeed,
the initial slopeκN,NI should have the same depen-
dence onθN asδN,NI , sinceNz(0) does not depend on
θN , provided the effective field is rotated adiabatically
(see below). When the initial slopeκN,NI is measured
with two different tilt angles, i.e. withθN = 0 and
θN 6= 0, one obtains a system of two equations de-
rived from Equations 6 and 11 which can be solved to
determine the ratio

r = JN,NI (ωN)

JN,NI (0)
= 2 sin2 θN

3
κN,NI (θN = 0)

κN,NI (θN)− 1
2(1+ cos2 θN)κN,NI (θN = 0)

(12)

This ratio r is independent of the initial magnetiza-
tion Nz(0) and of the tilt angleθI of the effective
field applied in the vicinity of the protons.The ratio
r provides a valuable measure of local mobility.Fast
motions should cause an increase ofJN,NI (ωN ) and a
concomittant decrease ofJN,NI (0). Therefore, a large
ratio r should be indicative of the presence of fast
internal motions, while a small ratior should reflect
local ‘rigidity’. Qualitatively, the ratior can be inter-
preted in a similar fashion as the ratioT2/T1 discussed
by Tjandra et al. (1996b) but it has the advantage
that no assumptions need to be made about contribu-
tions from different mechanisms. Indeed, the ratior of
Equation 12 is independent of the N-H distance (which
can vary due to hydrogen bonding), independent of the
chemical shift anisotropy1σ, (which may vary from
one amino acid to another) (Tjandra et al., 1996a), and
is not affected by chemical exchange.

Materials and methods

A sample of15N labeled HiPIP I was isolated and pu-
rified from E. coli cultures grown in a minimal M9
medium enriched with (15NH4)2SO4 (0.3 g/l). About
10 mg purified protein was exchanged through ultra-
filtration (YM3 membranes, Amicon) with 50 mM
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Figure 1. Pulse sequence used to measure the rate of conversionδN,NI (cross-correlation rate) of Zeeman orderNz into longitudinal
two-spin order 2NzIlz. The phase cycle wasφ1 = (y,y,−y,−y,y,y,−y,−y), φ2 = (x,−x,x,−x,x,−x,x,−x), φ3 = (y,y,y,y,−y,−y,−y,−y), φ4
= (y,y,y,y,y,y,y,y,),φrec = (x,−x,−x,x,−x,x,x,−x). All other pulses have phase x. The delays1a = 2.5 ms and1b = 2.3 ms were set slightly
below (41JNH )−1. The first selective RF pulse, which is applied to the water resonance, had a ‘seduce’ shape with a duration of 1.4 ms. The
second selective pulse had a Gaussian shape, a nutation angle of 270◦, and a duration of 2.2 ms. The last two water suppression pulses had
‘seduce’ shapes and a duration of 1.27 ms each. The durations and strengths of the field gradient pulses were: G1(0.8 ms, 8 G/cm), G2 (3 ms,
25 G/cm), G3 (0.5 ms, 5 G/cm), Gw (0.5 ms, 8 G/cm). An off-resonance RF field may be applied to the nitrogen-15 spins with an RF amplitude
that must be increased and decreased adiabatically.

Figure 2. Two-dimensional1H-15N heteronuclear correlation spec-
trum of HiPIP I from E. halophila recorded at 720 MHz with
the sequence of Figure 1 (mixing timeτm = 70 ms) using
off-resonance irradiation in the vicinity of both15N and1H reso-
nances (θN = θI = 35◦). The total experimental time was about
3 h.

potassium phosphate buffer, and the pH was gradually
lowered to 5.0. The sample was concentrated to 450µl
and reduced under anaerobic conditions by adding
20µl of a 0.15 M buffered isoascorbate solution. The
final protein concentration was about 2 mM. All spec-
tra were acquired at a temperature of 288 K on a Varian
Unity Plus spectrometer at the National High Mag-
netic Field Laboratory in Tallahassee, Florida, with

a static field B0 = 16.8 T and a proton Larmor fre-
quency of 720 MHz. An inverse triple-channel probe
with a self-shieldedz gradient coil was used. Each
two-dimensional spectrum consisted of 4K complex
points in t2 and of 64 increments int1, extended by
zero-filling to 128 points. The data were weighted with
a squared cosine function in both dimensions. The
cross peaks were integrated after Fourier transforma-
tion. The assignments were taken from the work of
Bertini et al. (1994, 1996b).

The basic sequence used to measure the conver-
sion of Nz into 2NzIz is shown in Figure 1. This
is closely related to experiments due to Boyd et al.
(1991). We have chosen to monitor the interconver-
sion ofNz into 2NzIz after the evolution timet1. Only
one 180◦ pulse needs to be applied to the15N spins
after the mixing timeτm. The off-resonance RF fields
are increased and decreased in trapezoidal fashion to
allow the magnetization to rotate adiabatically back
and forth between the directions of the static and the
tilted effective fields (Desvaux et al., 1995). For the
15N spins, the irradiation was applied at one chosen
offset, and the dispersion of the tilt angles experienced
by various nuclei was taken into consideration during
data processing. The phase cycling (see caption) was
chosen so that the signals vanish for long mixing times
(Sklenar et al., 1987). A hard 90◦ pulse applied to the
protons was followed by a strong dephasing gradient
G2 before the mixing timeτm to eliminate any unde-
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Figure 3. Schemes used to quench spin-diffusion between the protons during the mixing time of the sequence of Figure 1. (A) Sequence that
leads to the inversion of all longitudinal terms exceptNz and 2NzIlz in the middle ofτm in analogy to the QUIET method. The delays1c must
be (41JNH )−1 = 2.7 ms. (B) Off-resonance field applied to the protons so that the effective field subtends an angleθI = 35◦ with respect
to the z axis. The field amplitude must be increased and decreased slowly (typically in 3 ms) so that the magnetization components are rotated
adiabatically.

sirableIz and 2NzIz terms, so that the signal vanishes
for τm = 0. Water suppression was obtained by a com-
bination of water flip-back pulses (Grzesiek and Bax,
1993) and the Watergate scheme (Piotto et al., 1992).
The latter is implemented during the final delay that is
required to refocus 2NzIx into Iy magnetization. Sign
discrimination in theω1 dimension is obtained by the
States-TPPI method with phase-shifts of the first15N
90◦ pulse (Marion et al., 1989).

Build-up curves were recorded with the sequence
of Figure 1 withθN = 0◦ (i.e. without spin-locking
field), withθN = 25◦, and withθN = 35◦, in the latter
case with the RF carrier placed on opposite sides of the
resonance frequency. A typical 2D spectrum obtained
with θN = θI = 35◦ is shown in Figure 2. All build-up
curves were sampled with 13 to 17τm increments be-
tween 20 and 400 ms (and up to 900 ms forθN = 0◦).
The amplitude of the RF field applied near the15N
resonance was 0.92 or 1.2 kHz. In experiments where
an RF field was applied near the1H resonance, its
amplitude was 5 kHz. The experimental cross-peak in-
tensitiesaN,NI (τm) were compared by a least-square
fitting procedure using a Levenberg-Marquard algo-
rithm (Press et al., 1992) with a biexponential function
with two eigenvaluesλ1 andλ2, suitable for a system
of two coupled differential equations (see below):

aN,NI(τm) = A[exp(−λ1τm)− exp(−λ2τm)] (13)

Numerical simulations have been carried out using
a program written in C with parameters corresponding
to the experimental study. The distances and angles
between the nuclei were derived from the solution
structure of HiPIP I as recorded in the Protein Data
Bank (Banci et al., 1994, Bertini et al., 1996b). We
assumed an isotropic Brownian motion with an overall
correlation timeτc = 4 ns, an15N CSA tensor with a
cylindrical symmetry with1σ = −160 ppm, and a

principal axis assumed to be parallel to the N-H vec-
tor. The self-relaxation rates (diagonal elements of the
R matrix) were estimated from Equations 7 and 8 by
summing over the dipolar interactions between all spin
pairs within a cluster, considering the contributions of
the15N CSA and the dipolar couplings to the electron
spins associated with each of the four iron atoms. We
neglected the contact and Curie spin contributions, but
not the dipolar contributions of the electron spin to the
nuclear relaxation. The spectral density functions of
the dipolar electron-nuclear interactions were assumed
to be the same for all spin pairs (Bertini et al., 1996b).

To estimate errors of the initial slopesκN,NI , ran-
dom errors generated by a Monte Carlo algorithm
were added to simulated build-up curves, and biex-
ponential functions were fitted to the resulting noisy
curves. From the best-fitted functions, the initial
slopes were derived:

κN,NI = d

dτm
aN,NI (τm) = A[λ2− λ1] (14)

The associated errors were also determined. Thus,
no assumptions need to be made about the indepen-
dence of the errors of the three parametersA, λ1 and
λ2.

We have considered various schemes to quench
spin diffusion (Figure 3) and checked their efficiency
both experimentally and by numerical simulations.
To this effect, we have calculated the expected time-
dependence of a cross-peak amplitudeaN,NI (τm) and
then fitted the build-up with Equation 13 to estimate
the initial slopeκN,NI defined in Equation 14. Since
the initial magnetization is not known, Equation 12 is
used to determine the ratior of the spectral densities.
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Figure 4. Experimental build-up curves showing the conversion of
Nz into 2NzIlz order for three amino-acids in HiPIP I: Glu7, Tyr14,
Val60. The filled diamonds were obtained without quenching spin
diffusion in the mixing time, open squares with the QUIET scheme
of Figure 3A, and open triangles with off-resonance proton irradia-
tion with a tilt angleθI = 35◦ (Figure 3B). The continuous curves
correspond to best fits to the biexponential function of Equation 13.

Results and discussion

If the N-H system were truly isolated from its envi-
ronment, the interconversion ofNz and 2NzIz could
be described by reducing the dimensions of the matrix
R in Equation 2:

d

dt
〈2NzIz〉(τm) = −δN,NI 〈Nz〉(τm)

−ρNI 〈2NzIz〉(τm) (15)
d

dt
〈Nz〉(τm) = −ρN 〈Nz〉(τm)

−δNI,N 〈2NzIz〉(τm)

It is not necessary to consider the time-dependence
of 〈Iz〉 because the coupling between this reservoir and

Figure 5. Simulated recovery of inverted Zeeman magnetization
−Nz and build-up of 2NzIlz considering either (dashed line) a
complete relaxation matrixR including 12 remote protons or (solid
line) only a simplified two-dimensional relaxation matrixR as in
Equation 15.

Figure 6. The smallest eigenvaluesλ2 (longest time-constants) ob-
tained by fitting the bi-exponential function of Equation 13 to
experimental build-up curves obtained with the basic experiment
of Figure 1 (filled circles) and with the QUIET experiment of Fig-
ure 3A (open circles) for all observable amino-acid residues in
HiPIP I.

〈Nz〉 through cross-relaxation is much weaker than
the coupling between〈Nz〉 and〈NzIz〉 through cross-
correlation. In practice however, we cannot disregard
the effect of spin diffusion on the time dependence
of 2NzIz. Indeed, for a medium-sized protein with
τc = 4 ns at 16.8 T (720 MHz), the rateδN,NI is
comparable to the homonuclear cross-relaxation rate
σkl between two protonsIk and Il separated by 230
pm (δN,NI = 1.52 s−1 andσkl =1.51 s−1). An ac-
curate description requires a sum ofm exponentials,
in a manner that is reminiscent of NOESY build-up
curves (Boelens et al., 1988; Borgias et al., 1990;
Malliavin et al., 1992). Like in NOESY, the rateδN,NI

can in principle be determined by evaluating the initial
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slope of the build-up curves, but the signal-to-noise
ratio is usually not sufficient for short mixing times
τm. It is preferable to estimate the initial slope by
fitting the experimental build-up curve with the bi-
exponential function of Equation 13, where the rates
λ1 andλ2 are the eigenvalues of the system of two
coupled equations of Equation 15. This only yields
reasonable results if competing relaxation pathways
are effectively quenched. To check just how effective
this quenching needs to be, we analysed the effect of
spin-diffusion on the build-up curves of 2NzIz and on
the ratio r of Equation 12 through experiments and
simulations.

To quench spin-diffusion among protons, two
schemes were used. The scheme of Figure 3A was
adapted from the QUIET-BIRD NOESY experiment
(Zwahlen et al., 1994; Vincent et al., 1996). The use of
two 180◦ pulses leads to the inversion of all longitudi-
nal termsexceptNz and 2NzIlz. In this way the effect
of cross relaxation between the neighbour and remote
protonsIl and Ik on 2NzIkz terms is compensated
to first order by a flow of opposite sign, thus partly
quenching the effects of spin-diffusion. The scheme
of Figure 3B, on the other hand, uses an off-resonance
RF field on protons in order to quench cross-relaxation
processes between all pairs of protons. If the corre-
lation time is sufficiently long (τc � 1/ωI ), so that
only Jlk(0) contributes significantly in Equation 4, the
weighted average of longitudinal and transverse cross-
relaxation rates vanishes forθI = 35.3◦. In practice,
two transients were added with offsets of opposite
signs with respect to the center between the chemi-
cal shifts of neighbour and remote protonsIl andIk
(amide and Hα protons in the protein). This leads to a
small average variation of the tilt angles (Desvaux and
Goldman, 1996).

Figure 2 shows a typical two-dimensional spec-
trum of HiPIP, obtained with the sequence of Figure 1
with tilt anglesθN = θI = 35◦ and a mixing time
τm = 70 ms. Most residues can be identified, ex-
cept for a few (such as His52, Val68 and Tyr69) that
are too close to the paramagnetic Fe4S4 cluster to be
observed.

Figure 4 shows the build-up curves obtained for
three aminoacids (Glu7, Tyr14 and Val60) using two
different schemes to quench spin diffusion, which are
compared with experiments obtained without quench-
ing spin diffusion. The relaxation rates (eigenvalues
λ1 andλ2) resulting from fitting the build-up curves
with the biexponential function of Equation 13 are
reported in Table 1. A direct comparison of initial

slopes is difficult. The QUIET scheme leads to an at-
tenuation of the signals, mainly due to relaxation of
transverse magnetization during the pulse sequence,
but it does not affect the rates. On the other hand,
off-resonance proton irradiation leads to a decrease of
the cross-correlation rates (by a factor 1/cosθI , which
can be verified experimentally) and an increase of the
self-relaxation rate of two-spin order. It is interesting
to compare the experimental results with numerical
simulations. In Figure 5, the decay ofNz and the build-
up of 2NzIlz has been calculated using the complete
relaxation matrixR. This may be compared to the
behaviour that is predicted by considering only two
coupled equations as in Equation 15. Clearly, spin-
diffusion has little effect on the initial build-up, but
a more pronounced effect at longer mixing times. This
is described by the smallest eigenvalueλ2 (longest
time-constant), as may be appreciated in Figure 6.
If the simulated build-up curves are fitted to Equa-
tion 13, it is the smallest eigenvalueλ2 that is most
affected by spin-diffusion. In a system withn spins,
the curve decays slower for long mixing times than
in a system with only two spins. If spin diffusion
is active, the smallest eigenvalueλ2 decreases and
the longest time-constant becomes longer. Quenching
spin-diffusion therefore appears to accelerate the de-
cay. To simulate the quenching of spin diffusion by
QUIET experiments, the signs of all terms exceptNz
and 2NzIlz were inverted in the middle of the mixing
period. All terms exceptNz were attenuated by an
empirical coefficient 0.9 to account for losses due to
transverse relaxation during the pulses sandwich. The
build-up curve obtained in this way resembles that of
a two-spin system. Figure 7 shows build-up curves for
Leu59 and Ser73, which have been chosen because they
differ in the number of remote protons that occur in the
vicinity of their amide protons.

Table 2 shows the ratior, as defined in Equa-
tion 12, calculated for Leu59 and Ser73. These ratios
were derived from theoretical build-up curves com-
puted with different methods for quenching proton-
proton spin diffusion. When the proton magnetization
is allowed to relax freely, the error of the ratior is
about 5% for Ser73 (low proton density) but rises to
10% for Leu59 (high proton density). With an ideal
off-resonance irradiation with an effective field tilted
at θI = 35.3◦ for all protons, all proton-proton
cross-relaxation rates vanish. Not surprisingly, Table 2
shows that in this ideal case there are no errors in the
determination of the ratior of Equation 12, since the
system is isolated from the surroundings. This proves
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Table 1. (A) Relaxation rates (eigenvaluesλ1 and λ2 in s−1) obtained
by fitting the experimental build-up curves of Figure 4 with the biexpo-
nential function of Equation 13 for three amino acids in HiPIP I. The
self-relaxation rates 1/T1(15N) are also given. (B) Initial slopes (in arbitrary
units) of the corresponding build-up curves

A

without QUIET θI = 35◦ inversion-

quenching recovery

λ1 λ2 λ1 λ2 λ1 λ2 1/T1(15N)

Glu7 15.9 0.51 7.6 1.8 20.1 1.1 2.17

Tyr14 11.5 2.6 6.5 4.8 16.7 2.2 2.11

Val60 22.9 1.4 9.8 3.4 22.1 1.8 2.16

B

without quenching QUIET θI = 35◦

Glu7 94.5 49.1 71.4

Tyr14 81.9 58.2 78.4

Val60 102.1 55.0 76.9

Figure 7. Build-up curves showing the conversion ofNz into 2NzIlz, obtained with sequence of Figure 1, usingθI = 35◦ to quench spin
diffusion among the1H spins, andθN = 0◦ or 35◦ for the15N spins to estimate the ratior of Equation 12. For Leu59 and Ser73, the build-up
curves were fitted to biexponential functions defined in Equation 13. In the rigid residue Leu59, the fact that J(0)> J(ωN ) leads to a pronounced
dependence onθN . In the highly mobile Ser73 residue, the initial slope of the build-up curve is almost independent ofθN .

that relaxation pathways that are controlled by the
ratesσNI for both neighbour protonsIl and remote
protonsIk and pathways that are determined by the
rateδN,NI for remote protonsIk have little influence
on the measurement of the rateδN,NI for neighbour
protonsIl .

By contrast, the suppression of spin diffusion by
the QUIET method does not depend on the spectral
densities, but this approach can only be efficient if the

rates are not much faster than the inverse of the mixing
time (Schwager and Bodenhausen, 1996). In the simu-
lations that have been summarized in Table 2, we have
considered mixing times up to 1 s, while proton-proton
cross-relaxation rates are on the order of several s−1.

Finally, we have investigated the dependence of the
measurements on the signal-to-noise ratio (see Fig-
ure 8.) We have simulated build-up curves with a
proton irradiation withθI = 35.3◦and values ofτm
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Figure 8. Effect on the estimates of initial slopesκN,NI of errors added to cross-peak amplitudes. The points and error bars represent the
averages and standard deviations obtained from 1000 runs where random errors were added to simulated build-up curves, considering 17
mixing times ranging between 25 and 900 ms. Five different tilt anglesθN were considered while the proton tilt angle was kept constant to
θI = 35◦. The parameters were those for Leu59 and Ser73 in HiPIP I. The horizontal dashed lines represent the exact values. A slight bias
appears for large errors which lies well within the standard deviation.

that were close to the experimental values. By Monte-
Carlo simulations, random errors were added to the
simulated intensities. We have determined the average
initial slopes〈κN,NIf it 〉 and associated standard devia-
tions. The average initial slopes are always larger than
the exact ones. However, the differences between the
average best-fit values and the exact values are smaller
than the RMS deviations. The discrepancy between
〈κN.NIf it 〉 andκ

N,NI
exact is largest for small anglesθN and

high proton density.

Dynamic properties of the HiPIP I protein

Comparison of the initial slopes of the two buildup
curves acquired with and without nitrogen irradiation
gives an immediate measure of local mobility. Figure 7
shows experimental build-up curves for Leu59, which
lies in a rigid inner part of the protein, and for Ser73,
which is the last residue in the protein. When an off-
resonance field is applied to the15N spins, the initial
slope increases dramatically for Leu59, but it is hardly
affected for Ser73. This indicates that ‘switching on’
the effect of the spectral density contributionJN,NI (0)
has a much larger effect for Leu59 than for Ser73. This
is a clear indication of the higher local mobility of
Ser73 compared to Leu59.

The ratio r defined in Equation 12 has been de-
termined for all observable amide groups in HiPIP I,

Figure 9. Ratiosr as defined in Equation 12 for different amino-acid
residues of HiPIP I.

as shown in Figure 9. Large values ofr, indicating
enhanced local mobility, can be observed for residues
3, 6, 7 , 8, 10, 15, 18, 24, 31, 40, 50, 59, 61, 62, 72, and
73. Several of these mobile residues (i.e., 6, 7, 8, 10,
15, 61, 62) are concentrated in a region packed around
Tyr14, as may be seen in Figure 10. This residue is
conserved in all homologues of HiPIP from differ-
ent photosynthetic bacteria, and its aromatic ring is
close to the iron-sulfur cluster, thus contributing to
a hydrophobic core around the cluster. Site-selective
mutants of this residue with His, Trp, Ala, Leu, Phe,
such as a Y14F mutation, were shown not to be very
stable (Iwagami et al., 1995; Li et al., 1996). The
Tyr14 residue gives two hydrogen bonds, one as an
acceptor with the side chain CO of Asn16, one as a
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Table 2. The dimensionless ratior, as defined in Equation 12, extracted from numerical simula-
tions of different schemes used to quench spin-diffusion. Errors in percent are given in brackets.
Attention is focused on two amino acids with different proton densities: Ser73 has a lower density
(12 remote protons within a sphere of 4.6 Å radius) and Leu59 has a higher density (12 remote
protons within a sphere of 3.9 Å radius). The angleθI = 0◦ corresponds to free relaxation without
irradiation on protons. ForθI = 35.3◦, all cross-relaxation rates between protons vanish. The
QUIET scheme of Figure 3B inverts all terms exceptNz and 2NzIlz in the middle of the mixing
period, which should cancel cross-relaxation processes among protons to first order

Ser73 Leu59

(rexact = 0.234) (rexact = 0.232)

θI = 0◦ θI = 35.3◦ QUIET θI = 0◦ θI = 35.3◦ QUIET

θN = 15◦ 0.253 0.234 0.256 0.235 0.232 0.237

(+8.1%) (0%) (+9.4%) (+1.3%) (0%) (+2.2%)

θN = 30◦ 0.226 0.234 0.226 0.243 0.232 0.244

(−3.4%) (0%) (−3.4%) (+4.7%) (0%) (+5.2%)

θN = 45◦ 0.227 0.234 0.228 0.257 0.232 0.258

(−3%) (0%) (−2.6%) (+10.8%) (0%) (+11.2%)

θN = 60◦ 0.244 0.234 0.242 0.272 0.232 0.276

(−4.3%) (0%) (+3.4%) (+17.2%) (0%) (+19.0%)

Figure 10. Ribbon diagram of the solution structure of HiPIP I from
E. halophila. In addition to the backbone, the iron-sulfur cluster
(large spheres) and the Tyr14 side chain are shown. Rigid residues
with smallr ratios as defined in Equation 12 are drawn in dark grey
(upper right loop), partly mobile residues with mediumr values are
drawn in light grey, and highly mobile residues with highr values
are drawn in black.

donor with the NH amide group of Lys61, stabilizing
a region of the protein involving residues 6, 7, 8, 10,
15, 61, and 62, where a higher internal mobility was
detected. Another interesting region of the protein is
the loop spanning residues 40–50, represented by a
dark grey loop in the upper right of Figure 10. In
this case, mainly low values ofr are observed, with
the exception of positions 40 and 50. This is quite

surprising, since this region was found to crystallize
in two different conformations (Breiter et al., 1991)
and some discrepancies were observed between the
calculated and the experimental proton NOEs (Bertini
et al., 1996a). Therefore a high internal mobility was
expected. Of course, this mobility could occur on a
time scale that is slower than the overall correlation
time of the protein, which cannot be detected by the
methods described in this work. The residues around
Phe38, which separates the iron-sulfur cluster from
the solvent molecule that is approximately opposite
to Tyr14, and which was suggested to be involved
in the electron transfer, could not be detected. The
NH group of this residue gives a hydrogen bond with
a sulfur atom of the iron-sulfur cluster, like His52,
Cys66, Val68, Ala70, for which build-up curves could
not be recorded. Longitudinal1H self-relaxation rates
for some of these protons were found to be very fast
(e.g. T1 = 10 ms for Val68) (Bertini et al., 1996b).
Therefore the self-relaxation rate of 2NzIlz must also
be very fast, which should profoundly affect the shape
of the build-up curve.

Conclusions

We have shown that information on the dynam-
ics of N-H vectors can be obtained without using
the self-relaxation rates 1/T1{ 15N} and 1/T2{ 15N} or
1/T1ρ{ 15N}. The measurement of the cross-correlation
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rateδN,NI can provide similar information. This ap-
proach is not affected by various relaxation mecha-
nisms that contribute to the self-relaxation rates. Con-
tributions from fast chemical exchange to transverse
relaxation cannot interfere. This can be useful for
both dia- and paramagnetic proteins. Therefore, this
method, coupled to the measurement of 1/T1ρ with
variable spin-lock amplitude, provides a clean way to
separate fast internal motions from motions that are
slower than the overall rotational correlation time of
the protein. The HiPIP I protein does not show a large
dynamic heterogeneity. Only a region in the vicinity
of Tyr14 shows a relatively high internal mobility. On
the other hand, the region between residues 41–49 ap-
pears to be more rigid, although X-ray diffraction has
indicated that this region may crystallize in different
conformations.
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